Acta Crystallographica Section E

## Structure Reports

 OnlineISSN 1600-5368

Lars Eriksson ${ }^{\text {a }}$ and Jiwei Hu ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Division of Structural Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91<br>Stockholm, Sweden, and ${ }^{\mathbf{b}}$ Department of<br>Chemistry, University of Jyväskylä, FIN-40 351 Jyväskylä, Finland

Correspondence e-mail: lerik@struc.su.se

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.015 \AA$
$R$ factor $=0.065$
$w R$ factor $=0.092$
Data-to-parameter ratio $=16.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

## 4-Bromophenyl 2,3,4,5,6-pentabromophenyl ether

The title compound, $\mathrm{C}_{12} \mathrm{H}_{4} \mathrm{Br}_{6} \mathrm{O}$, belongs to a group of flame retardants known as polybrominated diphenyl ethers (PBDE). Intermolecular $\mathrm{Br} \cdots \mathrm{Br}$ contacts in the $b c$ plane give a sheetlike character to the structure of the title compound.

## Comment

Polybrominated diphenyl ethers (PBDE) are one of the most important groups of flame retardants. Most of the commercially available mixtures consist of highly brominated congeners, such as decabromodiphenyl ether (Eriksson et al., 1999; Mrse et al., 2000). The lower brominated PBDEs are, to a large extent, formed as decomposition products in the environment. Different decomposition pathways are presently being examined as part of a long-term project aimed at modelling the reactivity of different PBDEs often found deposited on soot particles etc. in the environment. Theoretical calculations require accurate geometries of the molecular species involved; thus the use of geometric data derived from crystallographic measurements is invaluable.

(I)

The monobrominated ring ( $\mathrm{C} 1-\mathrm{C} 6$ ) of the title compound, (I), is planar, with an r.m.s. deviation of $0.017 \AA$; the O atom deviates by 0.055 (18) $\AA$ and $\operatorname{Br} 1$ by 0.042 (17) $\AA$ from the ring plane. The pentabrominated ring (C7-C12) is planar, with an r.m.s. deviation of $0.015 \AA$; the O deviates by 0.127 (16) $\AA, \mathrm{Br} 3$ by 0.089 (16) $\AA$, and Br 4 by 0.070 (15) $\AA$ from the ring plane. The rest of the Br atoms, viz. $\mathrm{Br} 2, \mathrm{Br} 5$ and Br 6 , are coplanar with this ring. The dihedral angle between the two ring planes is $89.6(3)^{\circ}$.

A view, along the $b$ axis, of the arrangement of the molecules of the title compound, (I), is shown in Fig. 2, in which the three shortest intermolecular $\mathrm{Br} \cdots \mathrm{Br}$ contacts are marked. These contacts are: $\mathrm{Br} 1 \cdots \mathrm{Br} 2^{\mathrm{i}}=3.612$ (2) $\AA$, $\mathrm{Br} 3 \cdots \mathrm{Br} 3^{\mathrm{ii}}=3.604(3) \AA$ and $\mathrm{Br} 4 \cdots \mathrm{Br} 5^{\mathrm{iii}}=3.707(2) \AA$ [symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$; (ii) $-x, 1-y, 1-z$; (iii) $-x, 2-y, 2-z]$. Inclusion of all $\mathrm{Br} \cdots \mathrm{Br}$ contacts less than or equal to $3.9 \AA$ in Fig. 3 illustrates the extensive intermolecular $\mathrm{Br} \cdots \mathrm{Br}$ contacts present in the bc plane. As in the structure of 2,3,4,5,6-pentabromophenyl phenyl ether (Eriksson \& $\mathrm{Hu}, 2002$ ), in which there are no Br substituents on one of the rings, the title compound forms sheets defined by

Received 9 September 2002 Accepted 17 September 2002 Online 27 September 2002


Figure 1
One molecule of the title compound with the atom-numbering scheme. Displacement ellipsoids are shown at the $50 \%$ probability level. H atoms are shown as small circles of arbitrary radii.


Figure 2
View of the packing, along the $b$ direction, with the three shortest $\mathrm{Br} \cdots \mathrm{Br}$ contacts indicated by thick dashed bonds.
the $\mathrm{Br} \cdots \mathrm{Br}$ contacts, at $x \simeq 0.0$ and 0.5 , with small cavities where the monobrominated ring of molecules from neighbouring layers may fit.

## Experimental

The synthesis of the title PBDE was carried out by coupling of the decabromodiphenyl iodonium salt with a 4-bromophenylate (Beringer et al., 1959; Ziegler \& Marr, 1962; Hu, 1996, 1999). The product was recrystallized from methanol.

## Crystal data

$\mathrm{C}_{12} \mathrm{H}_{4} \mathrm{Br}_{6} \mathrm{O}$
$M_{r}=643.61$
Monoclinic, $P 2_{1} / n$
$a=37.325(6) \AA$
$b=5.2140(6) \AA$
$c=7.8782(10) \AA$
$\beta=96.073(13)^{\circ}$
$V=1524.6(4) \AA^{3}$
$Z=4$
$D_{x}=2.804 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 46 reflections
$\theta=15.4-27.1^{\circ}$
$\mu=18.94 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Slab, colourless
$0.11 \times 0.06 \times 0.04 \mathrm{~mm}$
Data collection
Stoe AED-2 diffractometer $\omega-2 \theta$ scans
Absorption correction: numerical
(XRED; Stoe \& Cie, 1997)
$T_{\text {min }}=0.13, T_{\text {max }}=0.48$
8595 measured reflections 2788 independent reflections 1393 reflections with $I>2 \sigma(I)$


Figure 3
Stereoview of the packing, along the $b$ direction, with all $\mathrm{Br} \cdots \mathrm{Br}$ contacts less than or equal to 3.9 A indicated by thick dashed lines.

## Refinement

Refinement on $F^{2}$
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
$w R\left(F^{2}\right)=0.092$
$S=1.16$
2788 reflections
173 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.01 P)^{2}\right]$ where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.96 \mathrm{e}_{\AA^{-3}}^{-3}$
$\Delta \rho_{\text {min }}=-0.99 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

| $\mathrm{Br} 1-\mathrm{C} 4$ | $1.844(11)$ | $\mathrm{Br} 5-\mathrm{C} 11$ | $1.883(13)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Br} 2-\mathrm{C} 8$ | $1.878(10)$ | $\mathrm{Br} 6-\mathrm{C} 12$ | $1.845(11)$ |
| $\mathrm{Br} 3-\mathrm{C} 9$ | $1.890(11)$ | $\mathrm{O}-\mathrm{C} 7$ | $1.391(12)$ |
| $\mathrm{Br} 4-\mathrm{C} 10$ | $1.865(10)$ | $\mathrm{O}-\mathrm{C} 1$ | $1.414(12)$ |
|  |  |  |  |
| $\mathrm{C} 7-\mathrm{O}-\mathrm{C} 1$ | $116.7(8)$ | $\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 8$ | $123.0(10)$ |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$ | $121.7(10)$ | $\mathrm{C} 2-\mathrm{C} 7-\mathrm{O}$ | $119.4(9)$ |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{O}$ | $122.4(9)$ | $\mathrm{C} 8-\mathrm{C} 7-\mathrm{O}$ | $117.1(9)$ |
| $\mathrm{C} 6-\mathrm{C} 1-\mathrm{O}$ | $115.7(9)$ |  |  |
|  |  |  | $-15.7(16)$ |
| $\mathrm{C} 8-\mathrm{C} 7-\mathrm{O}-\mathrm{C} 1$ | $104.2(12)$ | $\mathrm{C} 2-\mathrm{C} 1-\mathrm{O}-\mathrm{C} 7$ | $170.1(10)$ |
| $\mathrm{C} 12-\mathrm{C} 7-\mathrm{O}-\mathrm{C} 1$ | $-83.3(14)$ | $\mathrm{C} 6-\mathrm{C} 1-\mathrm{O}-\mathrm{C} 7$ |  |

The rather high $R_{\text {int }}$ value of 0.096 results from the large amount of weak insignificant reflections. With reflections fulfilling $I \geq 2 \sigma(I), R_{\text {int }}$ is reduced to 0.0473 .

Data collection: DIF4 (Stoe \& Cie, 1988); cell refinement: DIF4; data reduction: $X$-RED (Stoe \& Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: SHELXL97.

This work was supported by a grant from the Swedish Natural Science Research council.

## References

Bergerhoff, G. (1996). DIAMOND. Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
Beringer, F. M., Falk, R. A., Karniol, M., Lillien, G., Masullo, M., Mausner, M. \& Sommer, E. (1959). J. Am. Chem. Soc. 81, 342-351.
Eriksson, J., Eriksson, L. \& Jakobsson, E. (1999). Acta Cryst. C55, 2169-2171. Eriksson, L. \& Hu, J. (2002). Acta Cryst. E58, o794-o796.
Hu, J. (1996). Polybrominated Diphenyl Ethers (PBDE): Synthesis and Characterization. Licenciate Thesis, Department of Environmental Chemistry, Stockholm University, Sweden.

## organic papers

Hu, J. (1999). Peristent Polyhalogenated Diphenyl Ethers: Model Compound Syntheses, Characterization and Molecular Orbital Studies. Doctorate Thesis, Department of Chemistry, Research Report No. 73, University of Jyväskylä, Finland.
Mrse, A. A., Watkins, S. F. \& Fronczek, F. R. (2000). Acta Cryst. C56, e576e577.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1988). DIF4. Version 6.2. Stoe \& Cie GmbH, Darmstadt, Germany.
Stoe \& Cie (1997). X-RED. Version 1.09. Stoe \& Cie GmbH, Darmstadt, Germany.
Ziegler, H. \& Marr, C. (1962). J. Org. Chem. 27, 3335-3336.

